Laser cooling to quantum degeneracy.
نویسندگان
چکیده
We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1 μK on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10(5) atoms can be repeatedly formed on a time scale of 100 ms, with prospects for the generation of a continuous atom laser.
منابع مشابه
Laser Cooling and Trapping of Neutral Atoms
The ability to cool, manipulate, and trap atoms using laser light has allowed a new, rapidly expanding field to emerge. Current research focuses on improving existing cooling techniques, and the development of cold atoms as a source for applications ranging from atomic clocks to studies of quantum degeneracy. This review explains the basic mechanisms used in laser cooling and trapping, and illu...
متن کاملCreation of a Bose-condensed gas of 87Rb by laser cooling.
Protocols for attaining quantum degeneracy in atomic gases almost exclusively rely on evaporative cooling, a time-consuming final step associated with substantial atom loss. We demonstrate direct laser cooling of a gas of rubidium-87 (87Rb) atoms to quantum degeneracy. The method is fast and induces little atom loss. The atoms are trapped in a two-dimensional optical lattice that enables cycles...
متن کاملBose-Einstein Condensation in a CO2-laser Optical Dipole Trap
We report on the achieving of Bose-Einstein condensation of a dilute atomic gas based on trapping atoms in tightly confining CO2-laser dipole potentials. Quantum degeneracy of rubidium atoms is reached by direct evaporative cooling in both crossed and single beam trapping geometries. At the heart of these alloptical condensation experiments is the ability to obtain high initial atomic densities...
متن کاملTowards a Quantum Gas Microscope for Fermionic Atoms
This thesis reports the achievement of a two-species apparatus for use in an upcoming experiment with fermionic ultracold atomic gases. First, we describe the construction of a laser system capable of cooling and trapping gaseous lithium-6 atoms in a 3D Magneto-Optical Trap. Second, we discuss the realization of a 2D Magneto-Optical Trap which, in our experiment, acts as a high-flux source of c...
متن کاملA buffer-gas cooled Bose-Einstein condensate
We report the creation of a Bose-Einstein condensate using buffer-gas cooling, the first realization of BEC using a broadly general method which relies neither on laser cooling nor unique atom-surface properties. Metastable helium (He*) is buffer-gas cooled, magnetically trapped, and evaporatively cooled to quantum degeneracy. 10 atoms are initially trapped, leading to Bose-Einstein condensatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 26 شماره
صفحات -
تاریخ انتشار 2013